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Abstract

This paper focuses on on-going work in the “Action” project related to the decisional processes
that are required to allow teams of cooperating heterogeneous vehicles to achieve target local-
ization and tracking missions. Autonomy is made possible thanks to embedded functions such as
data fusion, planning and supervision, organized within each vehicle so that they can cooperate
together. Two essential characteristics are taken into account: the uncertainty on the environment
models and on the vehicle action models (motions, perception and communication) and the con-
straints on the inter-vehicle communications, that cannot be permanently maintained. The paper
presents the overall objectives of the Action project, analyzes the raised problems, and sketches
the global approach chosen for the planning and supervision processes.
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1 Introduction

A lot of research work has been devoted to various types of uninhabited ground, aerial, sea and
space vehicles, for both military and civil applications, aiming at endowing them with autonomous
abilities to achieve operational missions. The fact that the acronym “UxV” for such vehicles
(Uninhabited or Unmanned Vehicle) is being replaced by “AxV” (Autonomous Vehicle) highlights
the evolution of research towards decisional autonomy, which is intended to reduce the number of
remote operators, to change their roles and to decrease their workload.

The robotics and AI literature abounds in contributions targeted to vehicle autonomy, but re-
cently multiple cooperating autonomous vehicles have raised an increasing interest. Multiple
vehicles bring obvious benefits from an operational point of view: they increase the mission profit
while offering more robustness with respect to vehicle failures. Deploying multiple heteroge-
neous vehicles yields even better properties: the motion and perception complementarities of
various UxVs allow synergies and extend the operational abilities, be it for monitoring, surveil-
lance or exploration missions. But such systems require complex cooperation schemes, especially
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when communication constraints among the vehicles prevent planning and supervision to rely
on centralized solutions: these processes have to be distributed among the vehicles according to
cooperation schemes that maintain a consistent behavior for the overall system.

This paper presents on-going work on the planning and supervision framework for a team
of autonomous heterogeneous vehicles cooperating to perform target detection and tracking mis-
sions.

1.1 Context

This work is supported by the Action project, funded by the DGA, the French Defence procure-
ment agency, and supervised by the LRBA, the expertise centre for missile navigation)1. The
project started in January 2007 and should last 7 years. The project team is composed of re-
searchers and engineers from Onera, the French Aerospace Lab and Laas, a CNRS research labo-
ratory.

The main goal of the Action project is to develop and experiment means to endow a team
of heterogeneous vehicles to autonomously cooperate in order to localize entities evolving in the
operation theatre. An essential requirement is to be as independent as possible from external global
localization means – namely GPS. Scientific work in the project is set up around two groups of
functions:

• data fusion functions: data processing in order to localize the vehicles and the targets, and
to gather information on the environment;

• decision making functions: selection of the vehicle actions to perform and supervision of
their execution.

The developments will be assessed through demonstrations based on a set of scenarios that are
representative of operational contexts, that define missions driven by target localization (scenarios
are akin to search and rescue missions). Six scenarios have been defined in both aeroterrestrial
contexts (that involve AAVs2 and AGVs3) and aeromaritime contexts (that involve an AAV, an
ASV4 and an AUV5). The scenarios are defined with incremental cooperation complexity:

1. cooperation within a two-vehicle team: an AAV-AGV team in the aeroterrestrial context and
an AAV-AUV team in the aeromaritime context;

2. information sharing among three vehicles: one AAV and two AGVs (aeroterrestrial), and
one AAV, one AUV and one ASV (aeromaritime);

3. coordination of two heterogeneous AAV-AGV teams (aeroterrestrial);

4. flotilla management: cooperation of four AAV-AGV-AGV teams (aeroterrestrial).
1As this project is multidisciplinary, other DGA expertise centres are involved in the project supervision: CEP

(Paris) for information processing, ETAS (Angers) for land systems, CTSN (Toulon) for naval systems and GESMA
(Brest) for sub-marine fighting.

2Autonomous Aerial Vehicles
3Autonomous Ground Vehicles
4Autonomous Surface Vehicle
5Autonomous Underwater Vehicle
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The scenarios involve experimental vehicles owned by the project partners (AAVs and AGVs)
or lent by the DGA (ASV and AUV). All vehicles can move autonomously in their environment:
the Action project focuses on a hierarchical collaboration of vehicles for mission completion.

1.2 Outline

The following section briefly analyzes the problem and highlights the requirements on the decision
making functions, and on their organization. Section 3 sketches the choices made for data fusion
among the vehicles. Although these functions are not decisional processes, they provide the basis
on which the vehicles plan their actions and cooperate. Section 4 presents the two approaches
to the planning problem we are currently developing: an approach that mixes decision-theoretic
planning with Hierarchical Tasks Networks, and an approach that is centered on contract-net task
allocation schemes. Finally section 5 focuses on the way decisional processes and task execution
are supervised.

2 Problem description and analysis

All the project scenarios have the following characteristics:

• the goal is to localize one or several targets, human foes (aeroterrestrial scenarios) or mines
and wrecks (aeromaritime scenarios) and to track them (aeroterrestrial scenarios);

• besides mission preparation, each scenario involves two phases: a detection phase that is
akin to an exploration mission (even if prior models of the environment are available) and a
localization phase that includes target tracking (aeroterrestrial scenarios);

• the vehicles are heterogeneous as they have different motion and perception capabilities;

• communications between two vehicles and the operator are constrained by geometric crite-
ria;

• the models of the environment and of the vehicle actions are uncertain (in particular, GPS
localization is not available throughout the mission, which calls for environment-based lo-
calization techniques – see section 3).

The operator’s role is to specify the mission by defining the operation theatre and to monitor
the mission execution. Consequently they must be regularly informed on the progress of the
mission (areas explored so far, vehicle positions...)6

From the decisional point of view, the most important characteristics are the communication
constraints and the uncertainty of the models.

Communication constraints result in the fact that no centralized approach can be considered.
This calls for the distribution of the various processes and the explicit consideration of communi-
cations in the actions to plan and execute.

6The issues raised by the possibility for the operator to intervene in the mission are not in the scope of the project.
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Model uncertainty, and especially environment model uncertainty, does not allow a priori de-
fined complete plans to be executed as the vehicles must regularly update their plans according to
the evolution of their knowledge and to the asynchronous occurrence of disruptive events. Conse-
quently perception actions for knowledge update have to be planned and executed as other actions.

Therefore the following actions have to be planned, scheduled and distributed among the ve-
hicles:

• motion actions,

• communication actions (between vehicles and with the operator),

• perception actions and

• plan computation itself.

Decision capabilities are ensured by task planning on the one hand and by supervision on
the other hand. Supervision plays a central role: besides controling the proper execution of the
planned actions, supervision analyzes the vehicle state through situation assessment in order to
trigger replanning. Figure 1 shows the data flows between the various components embedded on
board each vehicle. Note that communications among vehicles are defined for each component.

Figure 1: Data and control flows within the main processes embedded in one vehicle.

The vehicle state knowledge is the basis of the decisional architecture: the data fusion function
updates the numerical state whereas the situation assessment function elaborates the symbolic
state. The multivehicle cooperation problem can be defined as an information gathering problem:
“what state to estimate in which agent and to communicate to which agent?”.

3 Data fusion

Data fusion encompasses all the processes that integrate data from the environment and the vehicle
states in order to (i) estimate the localization of the vehicles and targets and (ii) to build models
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of the environment that are exploited by the decisional processes. These data are mainly acquired
by the vehicles with their on-board sensors, but prior information on the environment is also
considered.

3.1 Vehicle localization

Since the first outcome of the missions is the target localization, vehicle localization is of major
importance. In the absence of external absolute localization means or of precise a priori maps,
the only way to reduce errors on the position estimates brought by the vehicles sensors (e.g.
inertial sensing, odometry for AGVs...) and to maintain a consistent position estimate is to rely
on environment features (landmarks) that are mapped as the vehicles evolves. The fact that the
mapping and the localization problems are intimately tied together has lead to the development of
Simultaneous Localisation And Mapping (SLAM) approaches so as to solve them concurrently in
a unified manner (see [2] for a survey).

To tackle the problem in a distributed multivehicle context, we have extended the notion of
hierarchical SLAM introduced in [7]: each vehicle builds a collection of local landmark maps
whose spatial organization is defined by a graph of uncertain frame transformations (figure 2).
Various “events” can lead to the evolution of the graph, that correspond to the establishment of
cycle7: when a vehicle matches landmakrs in a previously built map, when a GPS fix occurs, or
when an absolute position estimate is produced by matching detected features with geo-localized
features contained in an a priori map. But loop closures can also be detected in the overall graph
defined by all the vehicles individual graphs, e.g. when one vehicle localizes another one, or when
submaps built independently by two different vehicles are matched [12].

Figure 2: Hierarchical SLAM approach in a multivehicle context. Each vehicle maintains a se-
quence of submaps of landmarks, the spatial organization between the submaps and among the
vehicle is ensured by a higher level spatial graph of frame transformations. Here, the red arrow
represents an inter-vehicle loop closure, obtained by the matching of landmarks mapped by the
two vehicles.

The important fact is that the approach is distributed: each vehicle builds and maintain submaps

7literally, a “loop-closing”.
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and the associated graph, and when communications are available, only few data exchanges are
required to detect inter-vehicle loop closures.

3.2 Environment models

Landmark maps are required to maintain consistent localization estimates but only represent a
small subset of the environment properties. Other information on the environment is required for
the decision processes to assess the current situation and to plan the vehicle activities (figure 3):

• a traversability map is used to evaluate the feasibility and cost of motions,

• a 3D model is exploited to plan environment perception tasks, target detection tasks and
inter-vehicle communication tasks8 and

• context information is exploited to estimate the probability of target locations and to predict
their evolution.

Landmarks 

Target context informa3on 

3D model 

Traversability 

Figure 3: The four environment models required by the aeroterrestrial scenarios.

As a consequence, the environment is represented by a collection of layers, as in a Geographic
Information System. To ensure that they are spatially consistent, each of this layer is decomposed
into local submaps, according to the spatial structure defined by the SLAM approach.

3.3 Perception models

Besides motion actions, the vehicle perception actions have to be planned. Therefore models are
defined for each vehicle perception ability: target detection, target localization, vehicle localiza-
tion, plus a model of each environment modeling functionality. Given the nature of the sensors
and the environment models, these models are stochastic, and express the quality or quantity of
information brought by each perception action.

8A conservative model of visual inter-visibility is used as a communication model.
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4 Planning

In this multiagent localization problem, many team decisions must be taken in order to generate
the vehicle motion paths in the environment and to synchronize individual decisions and actions.
In other words the entire autonomous system must automatically produce geometrical and com-
munication decisions according to events that may occur during the mission. Many questions arise
concerning the different possible ways to tackle multiagent autonomous localization problems:

• should decisions be produced in a reactive way as new events occur or should they be robust
to new events and therefore conditionally depend on new events that may occur?

• should some decisions be produced off-line during mission preparation and some others be
generated on-line?

• in case of on-line replanning, should we assume that there is a leader vehicle that will gen-
erate a new team plan for the whole team or will individual vehicles replan for themselves?

• should decisions be optimal at the expense of costly computations or may suboptimal but
efficient decisions be acceptable in some cases?

• what is the abstraction level of planning models? more precisely, will decision and environ-
ment variables be all discrete, or all continuous, or both continuous and discrete?

• are we going to handle uncertain action effects or uncertain observations in the planning
models, knowing that such models lead to very costly computations?

In fact, there are no definitive answers to the previous questions, and many options are possible
and even complement one other. We are considering the development of a planning framework
along two directions: by mixing HTNs and MDPs on the one hand, and using a task allocation
scheme on the other hand.

4.1 DEC-MDPs & HTNs

This section describes the proactive multiagent planning method we implement. Before going into
further details, here is an overview of its main characteristics:

• we mix purely reactive planning algorithms, that assume that the environment is locally de-
terministic and that replan on-line in case of unpredicted action consequences, and proactive
planning methods, that produce conditional action plans (either off-line or on-line);

• a proactive planning algorithm generates a conditional team plan during mission prepara-
tion; this conditional plan is automatically translated into decentralized state machines that
are executed in each vehicle;

• since all events cannot be taken into account by the proactive method, decentralized on-line
(reactive or proactive) planning techniques are used to generate new plans if some events
occur that were not considered or known during mission preparation;
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• since communications between the vehicles are not always possible, the on-line decision
repair methods previously mentioned must be decentralized, i.e. individually run by each
vehicle knowing its local environment.

Our approach aims at automatically generating decentralized hierarchical supervisors during
mission preparation, but using such proactive techniques on-line to replace parts of some vehicle
supervisors will be considered later on.

A supervisor can be viewed as a fixed conditional plan that is hand-coded in a vehicle de-
cisional architecture. It controls the vehicle high-level behavior according to the current state,
exactly as a conditional plan (or policy) produced by some proactive planning algorithm. Conse-
quently we focus on the automated off-line generation of vehicle supervisors by means of proac-
tive planning algorithms.

4.1.1 Decentralized Markov Decision Processes

Markov Decision Processes [10] (MDPs) are a popular model for (monoagent) planning under
uncertainty with quantified probabilistic effects on actions. The fundamental assumption of this
model is that the probability of the next state, knowing the performed action and the current state,
only depends on the current state but not on the entire state history. Note that this property can
always be satisfied if “history” state variables are added in the state space.

The optimization of a criterion, generally defined as the mean of discounted cumulated rewards
over all probabilistic infinite-step trajectories, leads to the automated generation of an optimal
conditional plan. The latter, named policy, can be translated into a finite state automaton, which
is the supervisor formalism.

Extensions of this monoagent model to multiagent frameworks have been extensively stud-
ied. Decentralized Markov Decision Processes [3, 4] (DEC-MDPs) represent multiagent planning
problems with probabilistic effects on the agents’ actions. While the multiagent policy is centrally
optimized, its execution can be performed in a decentralized way by each agent. Nevertheless
the complexity of DEC-MDP optimization is NEXP-complete for more than three agents, which
makes this model generally useless for realistic multiagent planning problems. Most authors sim-
plify the model by assuming action transitions dependency and no communication between the
agents [3].

Yet, recent advances in hierarchical MDPs, as described in the next paragraph, have proved to
improve MDP optimization performance by many orders of magnitude in terms of computation
time and memory usage. Consequently we are currently extending this research to hierarchical
DEC-MDPs in order to solve realistic probabilistic multiagent planning problems.

4.1.2 Hierarchical Task Networks

Hierarchical Task Networks [6] are a hierarchical planning model where actions are organized as
a hierarchical action tree. Each action can be decomposed in simpler actions that can be executed
either in parallel or in sequence. A leaf of the action tree is named an elementary action because
it is not further decomposed. Other actions are named tasks. Contrary to non-hierarchical plan-
ning frameworks, HTN algorithms use the action hierarchy to ease the search of state trajectories
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leading to goal states. For instance, a sequence of actions directly encoded in the HTN spares the
planner the reconstruction of the action sequence.

Originally formalized for deterministic planning problems, HTNs have been successfully ex-
tended to probabilistic planning in [8]. By adding probabilistic effects on elementary actions,
HTN action trees have been used in conjunction with forward probabilistic planners to prune use-
less actions and state trajectories. As a result, the performance of these forward probabilistic
planners have been increased by many orders of magnitude.

Our work consists in extending probabilistic HTNs to multiagent probabilistic planning prob-
lems. It seems to us action hierarchies can be wittingly used to model team tasks or pre-compiled
communication strategies. In other words the HTN formalism should help the optimization of
DEC-MDPs by adding knowledge about team and communication strategies in order to suppress
expensive computations.

Finally the HTN model is a natural formalism to define structured planning problems where
some behaviors are required by the human operator: for instance, exploring a given area with
an AGV and na AAV requires the AAV to globally search the area for some obstacles, then the
AGV to plan a path between two ground points within a sub-area extracted by the AAV. Combined
with probabilistic reasoning, the HTN model provides a human-supervised formalism to optimize
structured team strategies.

4.2 Task allocation based planning

We are also considering the planning issues from the task allocation point of view. The main idea
is to solve the team planning problem by individual planning and by negotiation among vehicles
to coordinate and to cooperatively enhance individual plans, hence defining a global distributed
team plan9.

This choice is motivated by the fact that the scenarios raise complex team planning problems
that can hardly be solved in an optimal manner with a centralized approach. The fact that the
models are incomplete and uncertain indeed calls for the ability to dynamically replan vehicle
tasks, which cannot be dealt with in a centralized manner because of communication constraints.

Using a task allocation scheme is somewhat akin to an optimization problem: the team starts
with a non optimal plan divided into individual plans. During the execution, the vehicles enhance
their plans through negotiation, by buying or selling their tasks depending on the evolution of their
knowledge of the environment and of their plan execution. An essential property of such a scheme
is its distributed nature: vehicles negotiate only when they can communicate and negotiation may
occur only within a subset of the deployed vehicles.

However existing task allocation based architectures are not straightforwardly applicable to
our scenarios, mainly because of the communication constraints. Some approaches deal with this
issue, either considering communications as a constraint to satisfy or a utility to optimize. In [9],
the vehicles have to evolve while maintaining a MANET network. This is a strong constraint that
produces team configurations in which every vehicle must stay close to the others, which leads

9Note that this approach is only relevant for the aeroterrestrial scenarios, in which both the AAVs and the AGVs
can participate in the target detection and environment exploration tasks – whereas in aeromaritime scenarios, each
type of vehicle has a fixed predefined role.
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to non optimal covering or exploration schemes. In [1, 11], a utility is associated with commu-
nications: the actions (namely motions) of each vehicle are rewarded if they allow this vehicle
to communicate with other vehicles, and penalized otherwise. Hence there is no guarantee on
the communications, whereas the operational context requires the satisfaction of communication
constraints – such as regular communications between the vehicles and the operator for mission
monitoring purposes.

We propose a negotiation-based architecture that explicitly considers communications as one
of the possible vehicle actions – the others being environment perception and motions. Its main
properties are the following:

• A vehicle plan is represented by a temporal HTN-like plan: an AND node between two
tasks can encode a precedence order (HTN-like plans have already been considered in a
task allocation scheme in [13], but without considering temporal constraints).

• Communication tasks are explicitly modeled: besides the communication constraints, their
outcome, i.e. the information they allow to exchange, is modeled. Therefore various com-
munication tasks are defined: to enhance the knowledge of one vehicle about the environ-
ment, to refine vehicle or target position estimates, to ensure the synchronization of the plan
execution between vehicles, and to set up a negotiation between vehicles. Communications
then become a task that is negotiated and inserted in the vehicle plans, similarly to motion
and perception tasks.

Within each vehicle, the various processes to allow the development of a task allocation
scheme are organized into the following components: an individual planner evaluates the cost
and utility of inserting tasks, a negotiation component instantiates the negotiations for task alloca-
tion and opportunistic cooperation, an execution component monitors the task execution, includ-
ing the coordinations with other vehicles, and a decisional component is in charge of triggering
negotiations according to the situation assessment – and in particular the current execution status.

5 Supervision

Supervision is a central component of the architecture as it controls the execution of elementary
actions (motion, perception, communication), receives action plans – or policies – from the plan-
ning processes, and reacts to incoming events. We can distinguish two main topics:

1. The synthesis of a supervisor from the off-line planning processes: as discussed before, the
planning process could provide off-line a plan or a policy for the whole team to accomplish
the mission; while distributed (i.e. the vehicle actions are identified in the plan), the plan
needs first to be made hierarchical, so that we could define an agent hierarchy within the
team, and second connected to the supervisor of each vehicle.

2. The handling of disruptive events: even with a robust policy-based planner, we will not
avoid disruptive events during mission execution; the supervisor must be able to handle
disruptive events so that the mission could be performed.
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5.1 Off-line supervisor synthesis

The off-line planning process provides an off-line global policy, which is made hierarchical through
the HTN decomposition of the mission tasks. The actions of this policy are already allocated to
specific vehicles of the team. We can then allocate local plans to the vehicles but we need more
organization to handle authority into the team, for instance to tackle communication or replanning
processes. Consequently a team hierarchy organized as a set of sub-teams has to be considered.

The work proposed in [5] computes this hierarchy using a global plan described by a Petri
net. The same kind of abstraction could be performed using the HTN description of the mission
tasks. The objective is then to synthetize, from a HTN-based policy, a set of hierarchical and
synchronized state machines that will be distributed on the vehicles.

Moreover, these individual state machines must be connected into the vehicle supervisors.
This connection should consider:

• the possibility to translate state machines into each supervisor formalism (e.g., automata,
Petri nets or procedures);

• the link with action execution, in terms of methods the supervisor has to call, and returns of
these methods, in terms of action success (or failure) and resulting states.

5.2 Handling disruptive events

With a pro-active planner producing a robust policy most of the events are already handled by
the synthetized supervisor. However some disruptive events that were unknown (i.e. not consid-
ered in the planning process), or misknown (their a priori models were false) may have serious
consequences on the mission.

These events, dealt with as exceptions during execution, are thrown up in the supervisor hier-
archy (that corresponds to an agent hierarchy) until a way to catch it is found, i.e. a set of actions
to perform to go on with the mission.

These actions may be local (e.g., finding a new trajectory to reach next point without impacting
the sub-team plan), involve several agents into a "reactive" task (e.g., localization of an AGV by
an AAV), or need a replanning of (sub-)team actions.

6 Discussion

We presented first insights on the development of decisional processes to allow the deployment of
teams of heterogeneous vehicles. Uncertainties in the environment and communication constraints
raise a wide spectrum of difficulties, and in particular voids the a priori definition of complete ac-
tion plans: a good balance between planning and reacting has to be set, depending on the situation
at hand. Supervision plays here a crucial role, as it controls the planning and communication
abilities of the vehicles.

Work is only at a preliminary stage, and further developments will refine the definition of
solutions. In parallel, experimental scenarios with incremental complexity are defined and exper-
imented: actual demonstrations constitute a big challenge and will drive our developments.
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